hasil perkembangan yang lebih maju dari generasi pendahulunya, yaitu DDR SDRAM. Kelebihan utama DDR2 SDRAM terletak pada kemampuannya dalam mengoperasikan (menjalankan) bus data eksternal dua kali lebih cepat dibandingkan DDR SDRAM. Hal ini bisa terjadi karena adanya perbaikan pada sistem peng-signalan-an bus (bus signaling), dan pengoperasian sel-sel memori yang lebih cepat dibandingkan DDR SDRAM, tetapi, sayangnya DDR2 akan menghasilkan latency yang lebih tinggi sehingga dapat menurunkan performa memori itu sendiri.
Tidak berbeda dengan SDRAM, DDR2 menyimpan data pada unit penyimpan berupa sel-sel memori yang kemudian akan diaktivasi dengan menggunakan clock signal agar bekerja (beroperasi) serempak dengan bus data eksternal. Seperti halnya DDR, DDR2 juga mentransmisi data dua kali dalam satu siklus detak (clocok cycle), mengingat DDR2 juga mengunakan teknologi double data rate (dual pumped, double pumped, atau double transition), yaitu pada saat kurva clock signal sedang tinggi dan saat kurva clock signal sedang turun. Pokok perbedaan antara DDR dengan DDR2 yaitu:
Bus pada DDR2 didetakkan dua kali kecepatan sel-sel memori, sehingga dapat mentransfer data empat bit per siklus sel memori. Bandingkan dengan DDR yang hanya mampu mentransfer dua bit per siklus sel memori. Secara efektif, bus DDR2 dapat dijalankan dua kali kecepatan bus DDR.
DDR2 bekerja pada voltase yang lebih rendah dibandingkan DDR. Jika DDR didesain bekerja pada voltase 2,5 Volt, maka DDR2 didesain bekerja pada voltase 1,8 Volt.
Spesifikasi StandarModul DDR2 SDRAM yang digunakan dalam komputer PC desktop umumnya bertipe DIMM (Dual In-line Memory Module), memiliki 240 pin. Pada deretan pin terdapat satu buah lubang takikan (notch). Lubang takikan ini berada di deretan pin dibagian tengah, mirip dengan posisi lubang takikan pada DDR SDRAM, tetapi posisi lubang takikan pada DDR2 SDRAM lebih ke tengah. Bandingkan dengan SDRAM yang mempunyai dua lubang takikan.
Lubang takikan ini berguna untuk mencegah agar masing-masing tipe DRAM tersebut tidak saling dipertukarkan, karena masing-masing tipe DRAM tersebut tidak saling kompatibel. Akibat perbedaan lubang takikan tersebut, maka modul SDRAM tidak akan cocok (tidak dapat) dimasukkan atau diselipkan pada slot DDR2 SDRAM maupun slot DDR2 SDRAM. Sebaliknya, modul DDR2 SDRAM tidak cocok dimasukkan atau diselipkan pada slot SDRAM maupun slot DDR SDRAM.
Berikut ini disajikan laju transfer data maksimum (bandwidth maksimum) beberapa DDR SDRAM standar.
Nama standar DDR2 biasanya dituliskan DDR2-xxx, simbol xxx kecepatan transfer data per detik (bukan bandwidth). Jika dalam satu detik mampu melakukan 400 juta proses transfer data, maka penulisan nama standar DDR2 menjadi DDR2-400. Sedangkan nama modul memori biasanya dituliskan PC2-xxxx. Simbol xxxx melukiskan nilai bandwidth teoritis modul memori DDR2 SDRAM. Jika nama modul memori adalah PC2-3200, maka bandwidth modul memori tersebut 3200 MB/s (3,2 milyar byte per detik). Artinya, modul memori tadi mampu mentranmisi data sebanyak 3,2 milyar byte per detik. Nilai ini diperoleh dari perhitungan:
Nama standar DDR2 biasanya dituliskan DDR2-xxx, simbol xxx kecepatan transfer data per detik (bukan bandwidth). Jika dalam satu detik mampu melakukan 400 juta proses transfer data, maka penulisan nama standar DDR2 menjadi DDR2-400. Sedangkan nama modul memori biasanya dituliskan PC2-xxxx. Simbol xxxx melukiskan nilai bandwidth teoritis modul memori DDR2 SDRAM. Jika nama modul memori adalah PC2-3200, maka bandwidth modul memori tersebut 3200 MB/s (3,2 milyar byte per detik). Artinya, modul memori tadi mampu mentranmisi data sebanyak 3,2 milyar byte per detik. Nilai ini diperoleh dari perhitungan:
Bandwidth = kecepatan transfer data per detik x lebar bit data
Lebar bit data DDR2 SDRAM adalah 64 bit. Kecepatan transfer data DDR2 SDRAM PC2-3200 adalah 400 000 000 per detik. Dengan demikian, bandwidth-nya adalah:
Bandwidth = 400 000 000 transfer per detik x 64 bit
= 25.600.000.000 transfer bit per detik, atau
= 25.600.000.000 bit per detik
Jika nilai satuan bit dikonversi ke byte, maka nilai tadi harus dibagi dengan angka 8 sebab 1 byte = 8 bit (satu byte memerlukan delapan bit). Nilainya menjadi:
Bandwith = (25.600 000 000) / 8 Byte per detik
= 3200 000 000 Byte per detik
= 3200 MB per detik
= 3200 MB/s (Mega Byte per second)
Itulah sebabnya DDR2-400 disebut juga dengan nama PC2-3200. DDR2-400 adalah nama standar, sedangkan PC2-3200 adalah nama modul memori. Semakin tinggi kecepatan transfer data memori DDR2 SDRAM, semakin besar nilai bandwidthnya.
Pada beberapa modul DDR2 SDRAM, simbol angka xxxx yang tertera pada penulisan PC2-xxxx, merupakan angka hasil dari pembulatan ke nilai atas ataupun pembulatan ke nilai bawah. Contohnya, DDR2 SDRAM yang frekuensi bus memorinya 133 MHz, memiliki bandwidth 4266 MB/s. Modul memorinya kadang-kadang dituliskan PC2-4200 (pembulatan ke nilai bawah), kadang-kaang dituliskan PC2-4300 (pembulatan ke nilai atas). Beberapa perusahaan cenderung menuliskan ke nilai pembulatan atas, yaitu PC2-4300 karena berdasarkan hasil testing, modul DDR2 SDRAM ini mampu berjalan dengan kecepatan melebihi kecepatan standarnya. Penulisan semacam ini juga terjadi pada modul yang frekuensi bus memorinya 166 MHz yang kemudian dilabel PC2-5400, dan modul yang frekuensi bus memorinya 266 MHz yang kemudian dilabel PC2-8600.
Modul atau keping DDR2 SDRAM yang tersedia di pasaran, ada yang tipe ECC, ada pula yang non ECC. Ada yang tipe buffered, ada pula yang unbuffered. Itulah sebabnya, varian DDR2 SDRAM yang beredar di pasaran menjadi cukup banyak. Tipe-tipe DDR2 SDRAM biasanya dituliskan dengan aturan sebagai berikut:
Modul DDR2 SDRAM yang dilengkapi ECC dapat diketahui dengan mudah, karena biasanya kode tulisan ECC ini tertera (ditambahkan) di belakang nama modul memori. Misalnya PC2-4200 ECC, berari modul memori ini adalah modul DDR2 SDRAM PC2-4200 yang dilengkapi ECC.
Modul DDR2 SDRAM tipe buffered (buffered memory) juga dapat diketahui dengan mudah. Di belakang nama modul memori ini biasanya dicantumkan tanda huruf (karakter) ‘R’, misalnya PC2-4200R, berarti modul memori ini adalah tipe modul DDR2 SDRAM PC2-4200 buffered. Jika modul memori ini bertipe unbuffered (unbuffered memory), maka kadang-kadang (kemungkinan) di belakang nama modul memori ini dicantumkan tanda huruf (karakter) ‘U’. Misalnya PC2-4200U, berarti modul memori ini adalah tipe modul DDR2 SDRAM PC2-4200 unbuffered. Bila modul DDR2 SDRAM bertipe buffered yang dilengkapi ECC, maka di belakang nama modul biasanya diberi tambahan kode huruf R ECC. Misalnya PC2-4200R ECC, berarti modul memori ini adalah tipe modul DDR2 SDRAM PC2-4200 buffered yang dilengkapi ECC.
Modul DDR2 SDRAM tipe buffered umumnya memiliki sebuah chip yang berbeda yang letaknya berada di tengah-tengah modul RAM diantara deretan chip memori yang ada. Chip tersebut yang disebut ‘buffer’, bentuknya mirip dengan chip memori. Secara visual, seringkali modul RAM buffered dan unbuffered sulit dibedakan. Patut dicatat bahwa modul DDR2 SDRAM tipe buffered harganya lebih mahal. Modul yang banyak dijual di pasaran adalah DDR2 SDRAM tipe unbuffered.
Modul memori Fully Buffered (Fully Buffered module) DDR2 SDRAM dapat dikenali dengan melihat tanda huruf yang tertera di belakang nama modul. Apabila terdapat tambahan kode huruf ‘F’ atau ‘FB’, berarti modul tersebut adalah modul memori Fully Buffered. Secara fisik desain modul DDR2 SDRAM Fully Buffered berbeda dengan modul DDR2 SDRAM lainnya. Takikan (notch) pada deretan pin, posisinya tidak sama, sehingga modul DDR2 SDRAM Fully Buffered tidak dapat diselipkan pada slot RAM yang biasanya digunakan untuk tipe DDR2 SDRAM lainnya. Hal ini untuk mencegah kemungkinan terjadinya kerusakan, karena DDR2 SDRAM Fully Buffered memang tidak kompatibel dengan tipe DDR2 SDRAM lainnya.
Perlu diketahui bahwa modul memori unbuffered tidak cocok dipasangkan dengan modul memori buffered pada saluran (channel) yang sama.
Buffered memory adalah memori yang memiliki logic khusus untuk mengatur pembagian beban kerja pada setiap chip memori yang terdapat pada suatu modul DRAM. Buffered memory berguna untuk meningkatkan kemampuan kerja (kinerja) suatu modul DRAM. Modul memori yang termasuk jenis buffered biasanya memiliki chip-chip buffer berukuran kecil yang terpasang pada modul tersebut. Modul memori tipe ini biasanya digunakan untuk sistem komputer yang sangat penting, atau untuk komputer-komputer yang memiliki beban kerja tinggi pada memori, misalnya komputer server. Komputer-komputer PC desktop atau mobile yang biasa dipakai untuk kantor, rumahan atau pribadi, yang beban kerja ke memorinya tidak begitu besar, tidak perlu menggunakan memori tipe ini. Justru, apabila menggunakan memori tipe buffered, tak jarang mengakibatkan kinerja komputer menjadi lambat, karena memori tipe buffered memiliki latency (kelambatan proses) yang tinggi. Latency inilah yang menjadi titik kelemahan modul tipe ini bila digunakan untuk komputer-komputer yang memiliki beban kerja ringan ke memori. Buffered memory sering juga disebut dengan nama registered memory.
Berbeda dengan buffered memory, modul memori tipe unbuffered (unbuffered memory) tidak memiliki logic khusus untuk mengatur pembagian beban kerja pada setiap chip memori seperti yang terdapat pada buffered memory. Unbuffered memory disebut juga dengan nama non-regitered memory.
Istilah buffer berasal dari bahasa Inggris yang artinya kurang lebih adalah penyangga. Secara umum, dalam kaitannya dengan pengetahuan komputer, buffer berarti memori tempat untuk menyimpan informasi yang sifatnya sementara selama terjadi perpindahan informasi dari satu peralatan (device) ke peralatan lainnya. Buffer ini juga berfungsi untuk menyesuaikan perbedaan kecepatan antar peralatan tadi.
Contoh yang paling mudah dijelaskan, terdapat pada printer. Sebagian besar printer memiliki buffer sendiri. Buffer ini berfungsi untuk menerima dan menyimpan informasi yang berkecepatan tinggi yang berasal dari komputer (CPU). Printer tersebut kemudian mencetak informasi yang sudah diterima dan tersimpan di buffer dengan kecepatan rendah. Ketika printer sedang bekerja, komputer sudah bebas untuk melakukan tugas kerja yang lain dan tidak terpengaruh oleh kerja printer sampai printer tersebut kembali memberi signal bahwa ia sudah siap menerima informasi selanjutnya.
Modul DDR2 SDRAM yang diperkenalkan pertama kali adalah DDR2 ber-bus 200 MHz (PC2-3200) dan DDR2 ber-bus 266 MHz (PC2-4200). Keduanya diperkenalkan pada kuartal kedua tahun 2003. Namun, sayangnya, performa kedua modul DDR2 tersebut tidak lebih baik dari DDR generasi pendahulunya, sebab kedua modul DDR2 tadi memiliki latency yang lebih tinggi sehingga membuat total waktu akses data menjadi lebih lama. Teknologi DDR sendiri tidak dikembangkan lagi sebab kecepatan bus data maksimum yang bisa dijangkau secara normal terbatas pada 266 MHz.
Akhirnya, pada akhir tahun 2004, muncul modul DDR2 SDRAM yang memiliki latency lebih rendah dan memiliki performa lebih bagus. Sejak saat itu DDR2 mampu bersaing dan menggeser dominasi DDR, generasi pendahulunya.
Perbedaan dan kesamaan DDR SDRAM dengan DDR2 SDRAM
Memang, DDR SDRAM dengan DDR2 SDRAM tidaklah sama, masing-masing memiliki karakteristik sendiri dan berbeda satu dengan lainnya. Berikut ini perbedaan DDR SDRAM dengan DDR2 SDRAM yang biasa digunakan untuk PC desktop.
Keterangan:
Chip memori yang terpasang pada modul DDR SDRAM umumnya berjenis TSOP (Thin Small Outline Package), sedangkan chip yang terpasang pada modul DDR2 SDRAM umumnya berjenis TinyBGA (Tiny Ball Grid Array). Sebenarnya juga ada modul DDR SDRAM yang menggunakan chip memori jenis TinyBGA, tetapi jumlahnya sedikit sekali. Chip memori jenis TinyBGA digunakan untuk DDR2 SDRAM karena chip jenis ini mampu bekerja dengan kecepatan yang jauh lebih tinggi dibandingkan chip memori jenis TSOP. Chip memori jenis TSOP sendiri hanya mampu bekerja normal terbatas pada kecepatan maksimum 200 MHz hingga 250 MHz.
Karena menggunakan chip memori jenis TinyBGA, maka beaya produksi modul DDR2 SDRAM pada awalnya menjadi mahal dan proses perakitannya lebih sulit dibandingkan modul DDR SDRAM ataupun SDR SDRAM yang masih menggunakan chip memori jenis TSOP. Namun, tak lama kemudian harga modul DDR2 SDRAM menjadi lebih murah ketika diproduksi secara masal.
Yang dimaksud ‘kecepatan’ di sini adalah kecepatan efektif memori bukan kecepatan bus dasar atau bus sesungguhnya. Kecepatan ini menggambarkan kecepatan transfer data per detik. Oleh karena DDR dan DDR2 mempunyai lebar data 64 bit (8 byte), maka bandwidth DDR maupun DDR2 sebesar delapan kali kecepatan efektif memori, sehingga secara umum bandwidth DDR2 lebih tinggi dibandingkan bandwidth DDR.
DDR SDRAM bekerja pada tegangan 2,5 Volt, sedangkan DDR2 SDRAM bekerja pada tegangan 1,8 Volt. Dengan demikian tampak bahwa DDR2 SDRAM lebih hemat energi dan mengkonsumsi daya yang lebih rendah dibandingkan DDR SDRAM.
DDR SDRAM mempunyai 184 pin, sedangkan DDR2 SDRAM mempunyai 240 pin. Karena ukuran panjang kemasan atau modul (keping RAM) DDR SDRAM dan DDR2 SDRAM adalah sama, maka deretan pin pada DDR2 SDRAM tampak lebih padat dibandingkan deretan pin pada DDR SDRAM, karena DDR2 SDRAM menampung pin lebih banyak dibandingkan DDR SDRAM. Dengan sendirinya dimensi pin secara individual kedua modul tersebut juga menjadi tidak sama. Dimensi pin DDR2 SDRAM lebih kecil dibandingkan dimensi pin DDR SDRAM.
Posisi lubang takikan (notch) yang letaknya di tengah-tengah deretan pin juga tidak sama. Kedua modul tersebut memang tidak saling kompatibel. Ketidaksamaan posisi lubangang takikan tadi untuk mencegah agar modul yang tidak sesuai dengan slot memorinya tidak dapat diselipkan. Modul DDR SDRAM tidak dapat diselipkan pada slot memori yang didesain untuk DDR2 SDRAM. Begitu juga sebaliknya.
Controller internal pada DDR mengerjakan 2 bit data dari media simpan data (storage), DDR2 dapat mengerjakan 4 bit sekaligus, sehingga DDR2 SDRAM mampu bekerja lebih cepat dibandingkan DDR SDRAM.
o Nilai CL atau CAS Latency (waktu tunggu untuk pengiriman data) pada DDR SDRAM biasanya sebesar 2 clock, 2.5 clock, atau 3 clock, sedangkan pada DDR2 SDRAM biasanya nilainya lebih besar, sekitar 3 clock, 4 clock atau 5 clock, bahkan sampai 6 clock. Oleh karena itu, agar memiliki latency yang sepadan dengan DDR SDRAM, DDR2 SDRAM harus bekerja (dioperasikan) dua kali kecepatan busnya. Selain CAS Latency, pada DDR2 SDRAM kadangkala terdapat pula Additional Latency (AL) yang nilainya sebesar 0, 1, 2, 3, 4, atau 5 clock. Jika DDR2 SDRAM memiliki nilai CL4 dan AL2, maka nilai latency-nya menjadi 6.
DDR SDRAM memang berbeda dengan DDR2 SDRAM, tetapi keduanya memiliki kesamaan. Kesamaan keduanya terletak pada lebar data dan teknologi bus yang digunakan. Keduanya memiliki lebar data 64 bit, sama-sama menggunakan teknologi DDR (Double Data Rate atau Double Pumped).
Urutan pemasangan DDR2 SDRAM pada slot DIMM
Jumlah slot DIMM, tempat ditancapkannya DDR2 SDRAM pada motherboard untuk PC desktop biasanya lebih dari satu. Ada yang dua slot, tiga slot atau empat slot. Jumlah slot atau jumlah DDR2 SDRAM yang dapat dipasang pada motherboard tersebut ditentukan (diatur) oleh chipset (northbridge). Sebuah modul DDR2 SDRAM yang hendak dipasangkan pada motherboard, boleh diselipkan pada slot yang mana saja, misalnya slot DIMM pertama atau slot DIMM kedua. Jika motherboard memiliki tiga atau empat slot DIMM, maka modul memori tadi juga boleh diselipkan pada slot DIMM ketiga atau keempat. Walaupun demikian disarankan, sebaiknya modul memori tadi diselipkan pada slot DIMM pertama. Apabila modul DDR2 SDRAM yang hendak digunakan lebih dari satu, sebaiknya modul-modul memori tersebut diselipkan berurutan pada slot DIMM terdepan Misalnya digunakan dua buah modul DDR2 SDRAM, masing-masing selipkan pada slot DIMM pertama dan kedua. Apabila terdapat tiga buah modul DDR2 SDRAM yang digunakan, selipkan pada slot DIMM pertama, kedua dan ketiga.
Khusus pemasangan DDR2 SDRAM berkonfigurasi dual channel tidak boleh dilakukan sembarangan. Pemasangan DDR2 SDRAM berkonfigurasi dual channel ini memiliki aturan sendiri. Untuk mengaktifkan fitur dual channel diperlukan sepasang DDR2 SDRAM (dua modul DDR2 SDRAM) atau lebih, yang identik, memiliki spesifikasi sama. Pada motherboard yang menggunakan CPU berbasis Intel, sepasang modul DDR2 SDRAM tersebut umumnya dipasang berurutan pada slot DIMM ganjil saja (slot DIMM pertama dan ketiga) atau slot DIMM genap saja (slot DIMM kedua dan keempat). Bisa juga keempat slot tadi diisi modul DDR2 SDRAM semua. Untuk motherboard yang memiliki tiga buah slot DIMM, penggunaan fasilitas dual channel umumnya hanya bisa pada slot DIMM pertama dan ketiga saja. Jika slot DIMM kedua diisi, ada kemungkinan fasilitas dual channel ini tidak dapat diaktifkan. Namun, akhir-akhir ini (tahun 2008) diberitakan terdapat motherboard yang desain urutan slot DIMM untuk fitur dual channelnya berbeda, yaitu diletakkan pada posisi slot DIMM pertama dan kedua atau slot DIMM ketiga dan keempat. Petunjuk pemasangan modul DDR2 SDRAM berkonfigurasi dual channel pada slot DIMM biasanya terdapat pada buku manual motherboard yang bersangkutan. Pada motherboard modern, kadangkala dilengkapi petunjuk warna pada slot DIMM untuk memudahkan instalasi modul DDR2 SDRAM dual channel. Untuk mengaktifkan fitur dual channel, sepasang modul DDR2 SDRAM tadi harus diselipkan pada slot yang warnanya sama.
Fitur dual channel tidak selalu terdapat pada setiap motherboard. Keberadaan fitur tersebut bergantung pada spesifikasi chipset yang digunakan. Bila chipsetnya tidak memberikan dukungan fitur tersebut, maka fitur dual channel tidak akan bisa diaktifkan pada motherboard tadi.
Kompatibilitas modul DDR2 dengan generasi pendahulunya
Modul DDR2 SDRAM tidak dirancang kompatibel dengan modul DDR SDRAM. Seperti telah dijelaskan bahasan terdahulu, bahwa kedua modul ini (DDR dan DDR2) yang biasa digunakan untuk komputer desktop, memiliki posisi lubang takikan (notch) yang berbeda. Selain itu, keduanya memiliki jumlah pin (kepadatan pin) yang juga berbeda, dan bekerja pada kebutuhan tegangan yang juga berbeda. Jumlah pin pada DDR2 SDRAM lebih banyak dibandingkan DDR SDRAM dan bekerja pada tegangan yang lebih rendah dibandingkan DDR SDRAM.
Penggabungan modul DDR2 SDRAM yang berbeda kecepatan
Motherboard-motherboard sebuah PC umumnya menyediakan lebih dari satu slot RAM tempat diselipkannya modul RAM. Hal semacam ini menandakan diperbolehkannya pemasangan lebih dari satu modul RAM dalam sebuah motherboard. Kapasitas (daya tampung data) maksimum sebuah modul RAM dan jumlah maksimum modul RAM yang dapat dipasangkan pada sebuah motherboard sebenarnya diatur (ditentukan) oleh chipset (northbridge).
Idealnya, bila menggunakan lebih dari satu modul RAM, sebaiknya modul tersebut memiliki spesifikasi yang sama walaupun kebanyakan motherboard memang mengijinkan penggunaan dua atau lebih modul RAM sejenis yang spesifikasinya berbeda. Modul DDR2 SDRAM yang berbeda kecepatan, misalnya PC2-3200 dan PC2-4200 umumnya dapat digunakan bersama dalam satu motherboard. Kecepatan kerja kedua modul DDR2 SDRAM tersebut akan disesuaikan mengikuti modul DDR2 SDRAM yang kecepatannya lebih rendah. Dengan demikian kedua modul DDR2 SDRAM tadi akan bekerja dengan kecepatan mengikuti kecepatan modul PC2-3200, bukan PC2-4200. Apabila pemasangan kedua modul DDR2 SDRAM yang berbeda kecepatan ternyata menimbulkan masalah, misalnya komputer bekerja tidak stabil, ‘hang’ atau lainnya, masalah ini biasanya lebih banyak disebabkan tidak kompatibelnya dua modul tadi.
Overclocking DDR2 SDRAM
Modul DDR2 SDRAM yang sekarang ini banyak beredar di Indonesia, sebagian besar dapat dipacu kinerjanya dengan cara meningkatkan clock speed (frekuensi) bus memorinya hingga melebihi clock speed standarnya. Hasilnya, DDR2 SDRAM tersebut bekerja dengan kecepatan melebihi kecepatan normalnya. Pemacuan seperti ini dikenal dengan istilah overclock. Upaya overclock ini dilakukan dengan tujuan untuk mendapatkan performa atau kinerja komputer yang lebih baik.
Overclock terhadap bus memori (RAM) hanya dapat dilakukan secara optimal apabila motherboardnya memang mendukung upaya overclock ini. Overclock RAM kurang efektif jika clock frekuensi RAM sama dengan clock frekuensi prosesor. Jika meng-overclock RAM semacam ini akan lebih efektif bila diikuti overclock prosesornya juga. Selain overclock, penaikan voltase RAM di atas voltase standarnya (overvolting) juga dapat meningkatkan kinerja RAM.
Salah satu cara overclock dapat dilakukan lewat BIOS melalui menu ‘Frequency/Voltage Control’. Menu pada BIOS memang bervariasi bergantung merek/jenis BIOS-nya. Istilah yang digunakan pada menu juga beragam. Apapun istilah yang digunakan, bila ingin melakukan overclock RAM, carilah/pilihlah menu yang digunakan untuk mengatur frekuensi dan voltase RAM. Melalui menu pilihan tersebut dapat dilakukan pengubahan nilai clock frekuensi bus memori maupun nilai voltase memori.
Pada dasarnya terdapat dua macam modus untuk mengkonfigurasikan kinerja RAM (overclocking), yaitu modus synchronous dan modus asynchronous.
Pada modus synchronous, besar kenaikan frekuensi bus memori diatur sebanding dengan penaikan FSB pada motherboard. Modus semacam ini banyak ditemukan pada motherboard kelas mid atau end user.
Pada modus asynchronous, besar kenaikan frekuensi bus memori tidak bergantung pada FSB di motherboard. Modus semacam ini banyak ditemukan pada motherboard kelas atas (high end).
Kemampuan setiap modul DDR2 SDRAM untuk di-overclock (dengan spesifikasi yang sama), berbeda-beda bergantung banyak hal, salah satunya adalah merek modul dan kualitas bahan yang digunakan. Modul DDR2 SDRAM kelas high end (kelas atas), selain kinerjanya bagus, umumnya mempunyai kemampuan overclocking yang lebih tinggi dibandingkan RAM kelas value (kelas ekonomi, kelas bawah). Modul DDR2 SDRAM kelas high end memang terbuat dari bahan terbaik, harganya mahal, sebelum dipasarkan biasanya dilakukan serangkaian proses uji produk dan pemeriksaan (quality control) yang ketat.
Heatspreader pada DDR2 SDRAM
Tidak sedikit modul DDR2 SDRAM yang dilengkapi heat spreader yang melekat dan menutupi chip-chip memori. Heat spreader ini berguna untuk menyerap panas yang dikeluarkan oleh chip memori yang kemudian dibuang ke udara sekeliling modul. Dengan demikian temperatur chip memori tetap terpelihara tidak terlalu panas. Keberadaan heat spreader ini menjadi lebih penting terutama pada modul DDR2 SDRAM yang berkepatan tinggi.
Heat spreader ini juga berfungsi sebagai pelindung chip-chip memori dari efek listrik statis yang terdapat pada tubuh manusia, yaitu ketika keping memori sedang terpegang tangan yang terutama sering terjadi saat berlangsung pemasangan atau pelepasan modul memori dari slotnya di motherboard.
Bahan dasar heat spreader ini sangat beragam, biasanya yang banyak digunakan terbuat dari aluminium.
Hubungan DDR2 SDRAM dengan memori GDDR-2
Pengertian istilah DDR2 yang berkaitan dengan modul DRAM (DDR2 SDRAM), sebenarnya tidaklah sama dengan pengertian DDR2 yang biasa dipakai untuk memori kartu grafis (memori GDDR-2), walaupun ada perusahaan produsen kartu grafis yang mengklaim bahwa kartu grafis produksinya menggunakan teknologi DDR2. Patut dicatat, bahwa GDDR-2 ini bukanlah DDR2 seperti yang dipakai pada modul DDR2 SDRAM. Pada memori GDDR-2, laju clock I/O-nya tidak digandakan dua kali seperti yang terjadi pada DDR2 SDRAM Jika diperbandingkan, akan lebih tepat kalau dikatakan bahwa GDDR-2 tersebut menggunakan teknologi yang merupakan bentuk pertengahan antara DDR dengan DDR2.
Begitu juga istilah GDDR3 yang biasa dipakai oleh beberapa produsen kartu grafis. Teknologi GDDR3 kenyataannya lebih dekat dengan teknologi DDR2 yang diberi tambahan beberapa hal yang sesuai untuk kartu grafis. Sekarang ini (tahun 2008), GDDR3 banyak digunakan untuk memori kartu grafis modern.
DDR3 SDRAM kependekan dari Double Data Rate three Synchronous Dynamic Random Access Memory. Dalam teknik elektronika, DDR3 SDRAM adalah RAM berkecepatan tinggi yang berfungsi untuk menyimpan data ketika komputer sedang bekerja. Selain merupakan bagian dari perangkat komputer, DDR3 SDRAM juga digunakan pada peralatan elektronik digital lainnya.
DDR3 SDRAM termasuk keluarga SDRAM, merupakan salah satu hasil penerapan dari teknologi DRAM yang pada tahun 2008 masih tergolong baru. DDR3 SDRAM adalah penerus dan perkembangan dari generasi pendahulunya, yaitu DDR2 SDRAM. Kelebihan utama DDR3 SDRAM adalah kemampuannya untuk menjalankan bus I/O hingga empat kali kecepatan sel-sel memori.Hal ini yang mengakibatkan DDR3 SDRAM mampu mentransmisi data lebih banyak dan lebih cepat dibandingkan generasi pendahulunya. Namun DDR3 SDRAM memiliki latency yang lebih tinggi dibandingkan DDR2 SDRAM. Teknologi DDR3 ini membuka peluang besar diciptakannya chip memori berkapasitas 512 Mbit hingga 8 Gbit, dan secara efektif sangat memungkinkan diwujudkannya pembuatan modul memori berkapasitas maksimum 16 GB.
Sebenarnya, prototip DDR3 SDRAM telah diumumkan pada awal tahun 2005. Produknya sendiri baru muncul di pasaran pada pertengahan tahun 2007 yang berbasis pada chipset Intel P35 Bearlake. Menurut berita, AMD juga berencana mengadopsi DDR3 pada tahun 2008.
DDR3 SDRAM memiliki 240 pin, sama jumlahnya dengan pin DDR2 SDRAM. Ukuran panjang DDR3 SDRAM juga sama dengan panjang DDR2 SDRAM, tetapi kedua jenis modul tersebut secara elektronis tidak saling kompatibel satu dengan lainnya, dan keduanya memiliki lokasi notch (takian/kowakan) yang berbeda.
Konsumsi energi DDR3 SDRAM
Konsumsi energi DDR3 SDRAM lebih rendah dibandingkan pendahulunya, DDR SDRAM maupun DDR2 SDRAM. Bahkan dilaporkan bahwa pengurangan atau penurunan konsumsi energi DDR3 SDRAM ini mencapai 16% sampai 17 % dibandingkan DDR2 SDRAM. Tegangan yang dibutuhkan oleh ketiga jenis DRAM ini agar dapat bekerja atau beroperasi dengan normal, berbeda-beda. DDR SDRAM memerlukan tegangan 2,5 Volt, DDR2 SDRAM memerlukan 1,8 Volt, sedangkan DDR3 SDRAM memerlukan 1,5 Volt. Suplai tegangan 1,5 Volt cukup ideal untuk chip-chip memori yang diproduksi menggunakan teknologi manufaktur 90 nm. Chip-chip memori DDR3 SDRAM banyak yang diproduksi menggunakan teknologi manufaktur 90 nm. Beberapa perusahaan pembuat chip berencana menggunakan transistor ‘dual gate’ untuk mengurangi kebocoran arus yang mungkin terjadi.
JEDEC (organisasi untuk urusan pengembangan standar semikonduktor) merekomendasikan penggunaan voltase maksimum untuk DDR3 SDRAM sebesar 1,575 Volt, dan modul memori harus mampu bertahan pada tegangan 1,975 Volt walaupun pada tegangan sebesar itu kemungkinan chip memori tidak mampu bekerja sempurna (chip tidak berfungsi sempurna) seperti dalam kondisi normalnya.
Bandwidth
Controller internal pada DDR mengerjakan 2 bit data dari media simpan data (storage), DDR2 dapat mengerjakan 4 bit sekaligus, sedangkan DDR3 mampu mengerjakan 8 bit sekaligus, sehingga DDR3 SDRAM memiliki kecepatan transfer data dua kali lebih cepat dibandingkan DDR2 SDRAM atau empat kali lebih cepat dibandingkan DDR SDRAM. Dengan demikian, salah satu keunggulan DDR3 SDRAM terletak pada bandwidthnya.
Pada frekuensi bus memori yang sama (frekuensi dasar atau frekuensi yang sesungguhnya), DDR3 SDRAM memiliki bandwidth yang lebih tinggi dibandingkan generasi pendahulunya.
Bandwidth adalah banyaknya data maksimal yang dapat dipindahkan (ditransmisi) di dalam suatu jaringan elektronik (misalnya bus atau channel) dalam satuan waktu tertentu. Banyaknya data biasanya diukur dalam satuan bit ataupun byte, sedangkan satuan waktu yang digunakan biasanya adalah detik (second).
Berikut ini disajikan tabel perbandingan bandwidth atau laju transfer data maksimum per detik dari DDR SDRAM, DDR2 SDRAM, dan DDR3 SDRAM pada frekuensi bus memori yang sama.
Latency
JEDEC telah menetapkan standar latency untuk modul memori DDR2 SDRAM adalah 5-5-5-15. Sedangkan standar latency untuk modul memori DDR3 SDRAM ditetapkan 7-7-7-15. Dengan ditetapkannya standar latency ini membuat perusahaan-perusahaan produsen modul memori berupaya untuk memproduksi modul memori DDR2 SDRAM maupun DDR3 SDRAM yang memiliki nilai latency di bawah spesifikasi standar yang telah ditetapkan oleh JEDEC. Hal ini membuka peluang para pengguna komputer untuk mendapatkan modul memori yang lebih cepat (latency lebih rendah) untuk memperbaiki kinerja komputernya.
Hubungan DDR3 SDRAM dengan memori GDDR-3
Pengertian istilah DDR3 pada modul DDR3 SDRAM tidaklah sama dengan pengertian istilah DDR3 pada memori GDDR3 yang banyak digunakan pada kartu grafis kelas ‘high end’. Keduanya memiliki teknologi yang berbeda walupun mempunyai nama atau istilah yang sama. Teknologi GDDR3 kenyataannya lebih dekat dengan teknologi DDR2 yang diberi tambahan beberapa hal yang sesuai untuk kartu grafis.
Standar spesifikasi chip/modul DDR3 SDRAM
Modul memori DDR3 SDRAM yang beredar di pasaran umumnya berkecepatan efektif 800 MHz hingga 1866 MHz (frekuensi bus sesungguhnya adalah 100 MHz hingga 233 MHz), yang biasanya dituliskan dengan notasi DDR2-800 hingga DDR2-1866 atau PC2-6400 hingga PC2-14900. Spesifikasi modul DDR3 SDRAM yang beredar di pasaran selengkapnya dapat dilihat pada tabel berikut:
Keunggulan DDR3 SDRAM dibandingkan DDR2 SDRAM
Beberapa keunggulan DDR3 SDRAM dibandingkan DDR2 SDRAM antara lain:
- Mempunyai bandwidth yang lebih tinggi dibandingkan generasi pendahulunya.
- Kecepatan efektif memori dapat mencapai 1866 MHz (sampai tahun 2008)
- Lebih hemat energi dan performanya lebih bagus. Dapat memperpanjang waktu pemakaian laptop karena energi listrik pada batere tidak cepat habis.
- Dilengkapi desain sistem pendingin (cooler) yang lebih bagus.
Kelemahan DDR3 SDRAM dibandingkan DDR2 SDRAM
Kelemahan-kelemahan DDR3 SDRAM dibandingkan DDR2 SDRAM antara lain:
- Mempunyai CAS Latency yang lebih tinggi dibandingkan generasi pendahulunya sebagai kompensasi dari tingginya bandwidth.
- Sampai dengan tahun 2008, harga DDR3 SDRAM cukup tinggi.
Dual channel adalah sebuah teknik untuk menggandakan kecepatan komunikasi antara memory controller dengan memori RAM. Sebelum membahas lebih jauh perihal dual channel, akan dibahas dulu mekanisme akses data ke memori RAM dan bagaimana memori RAM secara tradisional terkoneksi ke sistem.
Mekanisme akses ke RAMSebenarnya memori RAM dikendalikan oleh sebuah sirkuit yang dikenal dengan nama memory controller. Pada komputer-komputer yang menggunakan CPU berbasis Intel, sirkuit ini secara fisik tidak tampak (tidak kasat mata) karena terdapat di dalam chipset yang ada pada motherboard, yaitu terdapat di dalam chip northbridge. Pihak Intel sendiri menyebut chip northbridge dengan nama MCH (Memory Controller Hub). Pada komputer yang menggunakan CPU type lama berbasis AMD (misalnya Athlon XP dan lainnya), memory controller ini juga berada di dalam chipset, sama seperti komputer yang menggunakan CPU berbasis Intel. Sedangkan komputer yang menggunakan CPU-CPU type baru berbasis AMD, misalnya keluarga Athlon 64 ataupun Phenom, memory controller tersebut berada di dalam chip prosesor (CPU) itu sendiri.Antara RAM dengan memory controller dihubungan oleh serangkaian saluran kabel yang melekat pada motherboard. Rangkaian saluran kabel ini sebenarnya terdiri dari tiga kelompok kabel, yaitu kelompok kabel yang bertugas menyalurkan data (bus data), kelompok kabel yang bertugas menyalurkan informasi tentang address (address bus = bus alamat), dan kelompok kabel yang bertugas menyalurkan instruksi atau komando (control bus = bus kontrol).o Kelompok kabel saluran data (bus data) adalah saluran yang khusus untuk jalan data, baik data yang dibaca dari RAM, maupun data yang akan ditulis atau disimpan ke RAM.Data yang dibaca dari RAM, ditransfer ke memory controller, kemudian ditransfer ke CPU (prosesor).Data yang akan disimpan, yang datang dari CPU, ditransfer ke memory controller, kemudian ditransfer ke RAM.Pada komputer yang menggunakan CPU berbasis Intel, memory contoller terdapat di dalam chipset northbridge. Oleh karena itu, data yang dibaca dari RAM ditransfer menuju chipset, kemudian disalurkan ke CPU. Sedangkan data dari CPU yang akan disimpan ke RAM, ditransfer dulu menuju chipset, baru kemudian ditransmisi ke RAMPada komputer yang menggunakan CPU jenis baru berbasis AMD, misalnya Phenom, memory contoller tidak berada pada chipset, tetapi terdapat di dalam CPU itu sendiri (integrated pada CPU). Itulah sebabnya, data yang dibaca dari RAM langsung ditransfer ke CPU, sedangkan data dari CPU yang akan disimpan ke RAM, langsung dikirim ke RAM. Aliran data antara RAM dan CPU tidak lagi melalui perantara chipset seperti yang terjadi pada komputer berbasis CPU Intel.- Kelompok kabel saluran address (address bus) bertugas membawa informasi tentang alamat (address) dan memberi tahu modul memori tentang alamat (address) dimanakah persisnya data yang telah dikirim dari CPU harus disimpan di dalam RAM, atau dengan kalimat sederhana dapat dikatakan ‘di alamat manakah data harus disimpan di dalam memori’.
- Kelompok kabel saluran kontrol (control bus) bertugas mengirimkan perintah atau instruksi ke modul memori tentang macam operasi yang harus dilakukan. Misalnya, operasi ‘pembacaan’ (read) atau mungkin operasi ‘penyimpanan’ (write/store).
Dengan demikian, mekanisme akses data ke RAM pada PC berbasis CPU Intel dapat digambarkan melalui diagram (skema) sederhana berikut ini.Pada sistem PC berbasis CPU Intel, chipset berperanan penting dalam mengatur RAM. Chipset inilah yang memberikan ketentuan tentang tipe memori yang boleh dipasang, kapasitas maksimum memori yang bisa didukung, dan kecepatan memori (clock rate) yang bisa ditoleransi. Yang dimaksud tipe RAM di sini, misalnya SDRAM, DDR SDRAM, DDR2 SDRAM, atau DDR3 SDRAM. Batasan terhadap kecepatan memory (RAM) dapat dijelaskan sebagai berikut:misalnya memory controller menetapkan kecepatan maksimum yang bisa ditoleransi pada sebuah sistem komputer adalah 667 MHz (DDR2-667). Bila ke dalam sistem komputer tersebut digunakan modul memori berkecepatan 800 MHz (DDR2-800), maka memori ini dengan sendirinya akan menyesuaikan diri bekerja pada kecepatan 667 MHz. Pembatasan kecepatan seperti ini diatur oleh memory controller dan umumnya terjadi pada komputer yang menggunakan CPU berbasis Intel.Pada sistem PC berbasis CPU AMD (keluarga Phenom), tipe memori yang boleh dipasang, kapasitas maksimum memori, dan kecepatan memori yang bisa didukung ditentukan oleh prosesor (CPU) itu sendiri karena memory controller memang berada di dalam CPU tersebut. Prosesor-prosesor AMD keluaran terbaru (tahun 2008) dilaporkan sudah dapat bekerja menggunakan DDR3 SDRAM karena memory controller yang ada di dalamnya mampu mengenali dan menerima teknologi ini.Prosesor-prosesor AMD yang menggunakan soket AM2 umumnya dapat mengenali dan menerima memori DDR2 hingga kecepatan 800 MHz. Sedangkan prosesor AMD yang menggunakan soket AM2+, misalnya prosesor Phenom, dapat mengenali dan menerima modul memori hingga kecepatan 1066 MHz.Dalam prakteknya, terdapat banyak hal menarik yang perlu dicermati berkenaan dengan masalah memori. Salah satunya tentang kapasitas memori dan jumlah slot memori yang tersedia pada motherboard. Seringkali dijumpai kapasitas memori dan jumlah slot yang disediakan pada motherboard, berada jauh di bawah standar yang sebenarnya mampu didukung oleh prosesor atau oleh chipsetnya (chipset yang terpasang pada motherboard tersebut). Sebagai contohnya:Banyak CPU Intel yang memiliki bus adres memori (bus eksternal CPU) 32 bit atau 36 bit, sehingga CPU ini secara teoritis dapat mengenali kapasitas memori hingga 4 GB (232 Byte) atau 64 GB (264 Byte). CPU ini jika mengakses RAM harus melalui chipset yang terpasang pada motherboard. Justru Chipset inilah yang sering membatasi jumlah atau kapasitas memori yang akan digunakan (yang akan didukung). Misalnya, chipset Intel P35 dan Intel G33 yang kenyataannya hanya menyediakan akses RAM terbatas hingga 8 GB (2 GB per slot memori). Di sisi lain, perusahaan motherboard tidak menyediakan jumlah slot memori yang memadai pada motherboard untuk pemasangan sejumlah modul memori yang kapasitas totalnya mencapai 8 GB (dalam hali ini seharusnya disediakan 4 slot memori, sehingga total kapasitas memori yang bisa dipasang dapat mencapai 4 x 2 GB = 8 GB). Misalnya, perusahaan motherboard yang menggunakan basis chipset Intel G33, sebagian besar hanya menyediakan 2 slot memori pada motherboard. Dengan demikian kapasitas maksimum modul memori yang bisa dipasang hanya 4 GB, karena setiap slotnya hanya bisa diisi modul memori dengan kapasitas maksimum 2 GB. Padahal, sebenarnya chipset tersebut menyediakan fasiltas penggunaan memori hingga 8 GB. Memang banyak alasan yang bisa digunakan untuk menjawab pertanyaan ini. Apapun alasannya, patut dicatat bahwa tidak sedikit konsumen yang juga ingin memaksimalkan kinerja komputer yang dimilikinya, sehingga pertanyaan ini juga pantas untuk diutarakan.Pengertian Dual channel
Pengertian dual channel dalam kaitannya dengan pengetahuan RAM adalah kemampuan memory controller untuk meningkatkan lebar bus data dari 64 bit menjadi 128 bit. Pada kecepatan (clock speed) memori yang sama, teknologi dual channel secara teoritis mampu meningkatkan transfer data maksimum hingga dua kali lipat. Setiap siklus clocknya akan mentransfer data dua kali lebih banyak dari kondisi normalnya (tanpa teknologi dual channel). Kecepatan transfer data maksimum secara teoritis atau yang dikenal dengan istilah MTTR (Maximum Theoritical Transfer Rate) sebenarnya adalah bandwidth memori itu sendiri. Jika suatu modul memori dipasangkan pada motherboard yang chipsetnya menyediakan fitur dual channel, kemudian fitur tersebut diaktifkan, maka bandwidth atau kemampuan transfer data maksimum atau kecepatan transfer data modul memori tersebut akan meningkat dua kali lipat. Perhatikan ilustrasi berikut:Sebuah unit komputer menggunakan motherboard yang chipsetnya menyediakan fitur dual channel untuk memori. Pada motherboard tersebut dipasang dua buah modul DDR2 SDRAM PC2-6400 (DDR2-800) yang juga memiliki dukungan untuk penggunaan dual channel. Secara teoritis, kecepatan transfer data maksimum setiap keping modul memori adalah 6400 MB/s, total untuk dua keping memori menjadi 2 x 6400 MB/s = 12800 MB/s. Jika fitur dual channel-nya diaktifkan, maka total kecepatan transfer data maksimum kedua keping modul memori meningkat dua kali lipat menjadi 2 x 12800 MB/s = 25600 MB/s atau 25,6 GB/s.Ilustrasi tersebut menggambarkan kecepatan transfer data secara teoritis dengan anggapan bahwa proses transfer data selalu terjadi pada setiap clocknya. Jika kecepatan efektif DDR2-800 adalah 800 MHz atau 800 juta herz maka akan terjadi 800 juta proses transfer data. Kenyataannya, fakta seperti ini sangat sulit terjadi. Bahkan sulit untuk mendapatkan bukti atau data otentik bahwa CPU maupun memory controller mampu 100 % mentransfer data sebanyak itu (sebanyak siklus cloknya) secara utuh dalam satu detik. Hal inilah yang menjadi alasan, mengapa bila diukur atau diuji dengan mengunakan software ataupun berbagai metoda yang ada, selalu didapatkan nilai kecepatan transfer maksimum yang lebih rendah dibandingkan nilai kecepatan transfer maksimum teoritisnya.Perlu diketahui bahwa penggunaan fitur dual channel mampu meningkatkan performa memori hingga dua kali lipat. Peningkatan performa setinggi ini hanya terjadi pada memori, bukan pada performa sistem komputer secara keseluruhan. Pengaruh penggunaan fitur dual channel terhadap peningkatan performa komputer secara keseluruhan, tidak terlampau tinggi, malahan dapat dikatakan tidak begitu mencolok.Teknik kerja fitur dual channel
Modul memori yang sekarang ini (tahun 2008) beredar di pasaran umumnya memiliki lebar bus data 64 bit. Hal ini bermakna bahwa terdapat 64 saluran kabel yang menghubungkan memory controller dengan slot atau soket memori. Saluran kabel tersebut diberi tanda (label) D0 hingga D63. Seluruh saluran kabel terhubung ke seluruh slot/soket memori yang ada. Dengan demikian, bus data yang terdiri dari 64 saluran kabel dipakai bersama-sama oleh semua slot/soket memori yang terdapat pada motherboard.Di sisi lain, sistem yang mendukung teknologi dual channel akan menggandakan bus data dari 64 bit menjadi 128 bit. Hal ini bermakna seharusnya terdapat 128 saluran kabel yang menghubungkan memory controller dengan slot/soket memori. Masing-masing saluran kabel ini diberi tanda D0 hingga D127. Oleh karena setiap modul memori hanya dapat menerima 64 bit setiap siklus clocknya, maka diperlukan dua modul memori agar dapat menerima 128 bit secara serentak (bersamaan) untuk setiap siklus clocknya. Sebagai konsekuensinya, agar teknologi dual channel ini dapat berjalan dengan sempurna, diperlukan sekurang-kurangnya sepasang memori (dua buah modul memori) yang identik, berkecepatan sama, berkapasitas, timing (latency)-nya sama, yang terpasang paralel pada motherboard dan dapat diakses dalam waktu yang sama. Teknologi dual channel tidak akan berfungsi jika pada motherboard hanya terpasang satu buah modul memori 64 bit.Mengaktifkan fitur dual channel
Tidak semua komputer dilengkapi fitur teknologi dual channel. Fitur ini hanya terdapat pada komputer-komputer tertentu yang memiliki fasilitas sebagai berikut:- Memory controller menyediakan dukungan penggunaan teknologi dual channel. Pada PC berbasis Intel, memory controller ini terdapat pada chipset di motherboard, sedangkan pada PC berbasis AMD, memory controller ini terdapat dalam CPU. Prosesor atau CPU AMD yang menggunakan soket 939, soket 940, soket AM2, soket AM2+ dan soket F(1207), umumnya menyediakan dukungan terhadap penggunaan teknologi dual channel.
- Jumlah slot/soket memori pada motherboard harus lebih dari satu (sedikitnya harus tersedia dua slot). Jika hanya tersedia satu slot, fitur dual channel tidak akan dapat dimunculkan.
- Terdapat dua atau empat keping modul memori (DDR, DDR2 atau DDR3) yang identik dan kompatibel dengan fitur teknologi yang disediakan/didukung oleh motherboard (chipset) dan CPU yang digunakan. Jika hanya terdapat satu modul memori, maka fitur teknologi dual channel tidak dapat dimunculkan.
Untuk memunculkan fitur dual channel, peletakan modul memori pada slot memori tidak boleh sembarangan. Masing-masing modul memori harus dipasangkan pada urutan slot ganjil saja atau genap saja. Jika terdapat petunjuk warna pada slot memori, pasangkan modul memori pada slot yang warnanya sama. Petunjuk lebih detilnya, silahkan baca pada bab bahasan ‘Urutan pemasangan DDR2 SDRAM pada slot DIMM’ yang ada pada buku ini.Pemeriksaan keberhasilan mode dual channel
Setelah pemasangan modul memori untuk konfigurasi dual channel selesai, perlu dilakukan pemeriksaan terhadap sistem komputer apakah telah berjalan pada mode dual channel atau belum. Untuk memastikannya, perhatikan informasi pada POST (POST = Power On Self Test) yang tetulis di layar monitor, yang akan muncul sesaat setelah komputer dihidupkan (di-on-kan). Bila informasi tentang Dual Channel tidak muncul di layar monitor, menandakan ada sesuatu yang salah yang harus diperbaiki, dan perlu dilakukan pemeriksaan ulang. Sebaliknya, bila di layar monitor memberitahukan bahwa sistem telah berjalan pada mode dual channel berarti instalasi yang dilakukan telah berhasil.Pemeriksaan apakah komputer telah berjalan pada mode dual channel juga dapat dilakukan dengan menggunakan bantuan software-software tertentu, misalnya CPU Z atau sejenisnya. Jenis ROM
Sampai sekarang dikenal beberapa jenis ROM yang pernah beredar dan terpasang pada komputer, antara lain Mask ROM, PROM, EPROM, EAROM, EEPROM, dan Flash Memory. Berikut ini disajikan uraian singkat dari masing-masing jenis ROM tersebut.
PROM
PROM kependekan dari Programmable Read Only Memory. PROM adalah salah satu jenis ROM, merupakan alat penyimpan berupa memori (memory device) yang hanya bisa dibaca isinya. PROM memang tergolong memori non-volatile, artinya program yang tersimpan di dalamnya tidak akan hilang walaupun komputer dimatikan (tidak mendapatkan daya listrik). Program yang tersimpan di dalamnya bersifat permanen. Biasanya digunakan untuk menyimpan program bahasa mesin yang sudah menjadi bagian hardware (perangkat keras) komputer. Contohnya adalah program yang men-start komputer ketika komputer baru dinyalakan (di-on-kan).
Program yang ada di dalam PROM diisi oleh pabrik pembuatnya. Pengisian program ke dalam PROM menggunakan alat khusus bernama PROM burner, atau PROM Writer Program atau informasi yang telah diisikan atau direkamkan ke dalam PROM, tidak dapat dihapus lagi.
EPROM
EPROM kependekan dari Erasable Programmable Read Only Memory. EPROM berbeda dengan PROM. EPROM adalah jenis chip memori yang dapat ditulisi program secara elektris. Program atau informasi yang tersimpan di dalam EPROM dapat dihapus bila terkena sinar ultraviolet dan dapat ditulisi kembali. Kesamaannya dengan PROM adalah keduanya merupakan jenis ROM, termasuk memori non-volatile, data yang tersimpan di dalamnya tidak bisa hilang walaupun komputer dimatikan, tidak membutuhkan daya listrik untuk mempertahankan atau menjaga informasi atau program yang tersimpan di dalamnya.
Alat yang dapat digunakan untuk menghapus isi chip EPROM adalah UV PROM eraser. Alat ini akan menyinarkan sinar ultraviolet ke memori tempat data disimpan dalam chip EPROM (disinarkan tepat pada lubang kuarsa bening). Dengan demikian, chip EPROM dapat digunakan kembali dan dapat diisikan informasi/program baru ke dalamnya. Informasi lain menyebutkan bahwa alat yang dapat digunakan untuk menghapus isi EPROM adalah EPROM Rewriter.
EEPROM
EEPROM kependekan dari Electrically Erasable Programmable Read Only Memory. Seperti halnya PROM dan EPROM, EEPROM merupakan memori non-volatile. Informasi, data atau program yang tersimpan di dalamnya tidak akan hilang walaupun komputer dimatikan, dan tidak membutuhkan daya listrik untuk mempertahankan atau menjaga informasi atau program yang tersimpan di dalamnya.
EEPROM adalah komponen yang banyak digunakan dalam komputer dan peralatan elektronik lain untuk menyimpan konfigurasi data pada peralatan elektronik tersebut. Kapasitas atau daya tampung simpan datanya sangat terbatas. Pada sistem hardware komputer, chip EEPROM umumnya digunakan untuk menyimpan data konfigurasi BIOS dan pengaturan (setting) sistem yang berhubungan dengannya.
EEPROM memiliki kelebihan tersendiri dibandingkan EPROM. EEPROM dapat dihapus secara elektris menggunakan sinar ultraviolet, sehingga proses penghapusannya lebih cepat dibandingkan EPROM. Penghapusan juga dapat dilakukan secara elektrik dari papan circuit dengan menggunakan perangkat lunak EEPROM Programmer. Alat yang dapat digunakan untuk menghapus isi EEPROM disebut EEPROM Rewriter. Produk EEPROM versi awal, hanya dapat dihapus dan diisi ulang kurang lebih sebanyak 100 kali. Sedangkan produk-produk terbaru dapat dihapus dan diisi ulang (erase-rewrite) sampai ribuan kali (bahkan beberapa informasi menyebutkan mampu sampai 100 ribu kali)
Flash Memory
Flash memory yang dikenal pula dengan sebutan memori flash, adalah memori sejenis EEPROM yang memberikan banyak lokasi memori untuk dihapus atau ditulisi dalam suatu operasi pemrograman. Flash memory tetap dapat menyimpan data tanpa memerlukan penyediaan listrik. Penulisan ke dalam flash memori dapat dilakukan dengan menggunakan alat yang disebut EEPROM Writer atau software yang dapat menulisi Flash ROM. Sedangkan penghapusan datanya dapat dilakukan dengan menggunakan alat yang disebut EEPROM Writer, atau langsung secara elektrik dari papan sirkuit dengan menggunakan software Flash BIOS Programmer.
Memori jenis ini banyak digunakan dalam kartu memori, drive flash USB, kamera digital, pemutar MP3, hingga telepon genggam.
BIOS memang berkaitan erat dengan ROM, sebab sebagian besar BIOS yang terdapat di dalam perangkat keras komputer disimpan di dalam ROM, baik PROM, EPROM, EEPROM, Flash ROM, ataupun jenis ROM lainnya. Namun, setelah tahun 1995, EEPROM dan Flash Memory lebih banyak digunakan daripada jenis ROM lainnya karena BIOS yang terdapat pada kedua jenis ROM ini mudah dihapus dan ditulisi lagi sehingga membuka kemungkinan dilakukannya update BIOS. Update BIOS seringkali diperlukan oleh para pengguna komputer karena beberapa alasan, antara lain:
1. Untuk mendukung prosesor yang lebih baru, sebab pengguna komputer baru saja mengganti prosesor yang lama dengan prosesor tipe baru untuk mendapatkan kinerja yang lebih baik.
2. Untuk mendukung perangkat lain yang baru dipasangkan karena BIOS yang lama belum memberikan dukungan pada perangkat tipe baru tersebut.
3. Adanya bug yang mengganggu pada BIOS yang lama.
4. Atau berbagai alasan lainnya.
Para produsen motherboard sering menyediakan BIOS versi baru untuk meningkatkan kemampuan produk mereka atau untuk membuang bug-bug yang mengganggu. Adanya bug-bug pada BIOS biasanya baru diketahui setelah BIOS tersebut dirilis. Oleh karena itu BIOS yang ber-bug harus di-update dengan BIOS versi yang lebih baru yang merupakan edisi perbaikan dari BIOS yang lama.
Proses update BIOS harus dilakukan dengan cermat dan hati-hati. Proses update yang tidak benar dapat mengakibatkan tidak berfungsinya motherboard (motherboard mati), karena firmware yang digunakan untuk membantu proses booting (BIOS) tidak dapat berfungsi. Kerusakan yang terjadi bukan kerusakan fisik komponen motherboard, tetapi kerusakan software BIOS (firmware) yang ada pada EEPROM atau Flash Memory.
Kebanyakan BIOS pada saat ini, memiliki sebuah region (lokasi) di dalam EEPROM atau Flash Memory yang disebut dengan istilah Boot Block yang sengaja ‘dilindungi’ dan tidak dapat di-upgrade. Ketika komputer dinyalakan, Boot Block tersebut selalu dieksekusi pertamakali. Kode dari Boot Block akan mem-verifikasi BIOS untuk mengetahui apakah BIOS dalam kondisi normal atau rusak. Apabila BIOS dalam kondisi normal (tidak rusak), komputer segera mengeksekusi BIOS itu sendiri. Sebaliknya, bila ternyata BIOS mengalami kerusakan, maka boot block akan menampilkan pesan di layar monitor agar pengguna komputer melakukan pemrograman (pengisian) BIOS lagi dengan menggunakan versi BIOS yang sama atau di-update dengan versi BIOS yang lebih baik. Program BIOS yang digunakan untuk meng-update biasanya disimpan di dalam disket, di dalamnya tersimpan flash memory programmer dan image BIOS.